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The impossibility to use the MCMC �Markov chain Monte Carlo� methods for long noisy chaotic time series
�TS� �due to high computational complexity� is a serious limitation for reconstruction of dynamical systems
�DSs�. In particular, it does not allow one to use the universal Bayesian approach for reconstruction of a DS in
the most interesting case of the unknown evolution operator of the system. We propose a technique that makes
it possible to use the MCMC methods for Bayesian reconstruction of a DS from noisy chaotic TS of arbitrary
long duration.
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I. INTRODUCTION

The presence of a noise component in the time series
generated by a dynamical system �DS� results in finite accu-
racy of reconstruction of the evolution operator �EO�: Any
model that can be constructed will, generally speaking, differ
from the original system. One of the ways to take this fact
into consideration is to describe parameters of the model EO
as random quantities �1�. Two limiting cases may be distin-
guished �2�: The “perfect model” scenario when the form of
the operator describing the DS evolution is reliably known,
and the “imperfect model” scenario when EO is unknown.

The perfect model scenario is realized, for instance, when
the problem of hidden information transmission is solved
using chaotic time series �TS� generated by the known DS
�3�. In this case we are interested in the characteristics of the
system �“perfect model”� parameters �the most probable
value, mean, dispersion, distribution�. In investigations of
many “natural” �atmospheric-oceanic, tectonic, biological�
systems the EO is unknown, which corresponds to the im-
perfect model scenario. Then, information about model pa-
rameters is of no value as the physical meaning of the pa-
rameters is unknown, and we are interested in the properties
of the model defined by these parameters and reflecting the
properties of the reconstructed DS. Nevertheless, in this case
too evaluation of statistical characteristics of model param-
eters is the key element without which the problem of recon-
structing a DS generating the original TS cannot be solved.

The mathematical body used to reconstruct the DS is de-
termined by a specific application. For example, for finding
the most probable set of model �perfect or imperfect� param-
eters it suffices to determine the maximum of posterior prob-
ability density of model parameters �4–6�. However, it
should be remembered that in the presence of noise the in-
verse problem of reconstruction becomes ill-posed, i.e., it
admits an infinite set of solutions. Selection of the “most
correct” solutions demands regularization that is a physically
justified constraint on admissible values of parameters based
solely on a priori information �7�. This approach is usually

called Bayesian. Within the Bayesian approach, there are
methods which make it possible to estimate dispersions and
mathematical expectations of the model parameters �8�. A
significant advantage of such methods is their relatively low
computational resource requirements. However, due to the
model nonlinearity, the form of parameter distribution may
differ strongly from the normal one. In this case, estimation
of expectation and dispersion is insufficient to construct a
correct model, and one must use the Bayesian approach in
full. In other words, we must construct models which include
distributions of parameters and take a priori information
about the system into account correctly. In this formulation
the problem can be solved using the Markov chain Monte
Carlo �MCMC� algorithms �9�. However, in the case of re-
construction of DSs by noisy chaotic time series, computa-
tional resources required for these algorithms strongly de-
pend on distribution dimensionality. This limits applicability
of the algorithms to a narrow class of problems, e.g., the case
of short TS �10�. The method proposed in this paper makes it
possible to expand the applicability domain of the MCMC
algorithms to the case of arbitrarily long TS.

II. FORMULATION OF THE PROBLEM

In what follows, we will assume that the available time
series can be used to state the fact of dynamism of the system
that has generated it, to determine minimum embedding di-
mension d �11�, and to reconstruct the phase trajectory �12�
�xt�t=0

T ,xt�Rd, and t enumerates moments of the discrete
time. Let us assume that the system experimented upon has a
set of properties �parameters� � which cannot be measured
directly. Let us consider, for the sake of certainty, a DS with
discrete time

xt = Ut + �t, Ut = f�Ut−1,�� + �t. �1�

Here, the vector x= �xk�k=1
d , as mentioned above, is an observ-

able quantity; U= �Uk�k=1
d is a latent variable characterizing

the true state of the dynamical system in the d-dimensional
phase space; f�U ,�� is the vector function describing the DS
evolution operator; � are unobserved parameters; and �t and
�t are random quantities �“noises”� with distributions w� and
w�. Then, in accordance with the Bayesian theorem �13�, the
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posterior conditional probability density �PD� P�� , �U�x� for
the unobserved parameters � an unknown �latent� states of
the DS are proportional to the product of their prior PD
P�� ,U� and conditional PD for the obtained experimental
results P��x�� ,U�,

P��, �U�x� � P��,U�P��x��,U� . �2�

In the case of an unknown DS, the evolution operator
f�U ,�� is a model of the reconstructed system, and the ran-
dom quantity �t describes the defect of the model, i.e., the
discrepancy between the model and the reconstructed system
�14�. To write the probability density function �PDF� several
assumptions are made. First, the model is supposed to be so
“good” that the width of distribution w� is much larger than
the width of distribution w�, so that the latter can be regarded
to be the � function. Second, following �10�, we take into
account that for the chaotic TS the information coupling be-
tween the TS points is known to decrease with increasing
time interval between the points. In other words, the system
starts to “forget” its initial state with time. Hence, assuming
the states of the system separated by large time intervals to
be independent we can regard the latent variables to be
coupled only in finite time periods �“segments”� of length
�w+1�. As a result, expression �2� for P�� , �U�x� can be
transformed �see �10� for details� to

P��, �U�x� � P��,U� �
t=0

M−1

�
j=0

w

w��xt�w+1�+j+1 − f j�Ut�w+1�+1,��� ,

�3�

where T is the total length of the TS; M =T / �w+1� is the
number of segments into which the initial TS is split assum-
ing that there is no information coupling between the TS
points belonging to different segments; and f j�¯� is the evo-
lution operator applied j times �15�. Note that for w=T the
expression �3� transforms to the classical Bayesian expres-
sion which, as was noted above, is inapplicable for recon-
struction by noisy chaotic time series. For w�T, �3� is,
strictly speaking, an approximate expression. Its applicability
for reconstruction by a concrete time series was justified in
�10� and reduces to a correct choice of w �“the larger, the
better”�. In Sec. IV we will show that the lower limit on w
that ensures correctness of the expression �3� is a sufficient
condition of the applicability of the proposed modification of
the MCMC method. More detailed information about prior
parameter distribution P�� ,U� will be given in Secs. III and
IV.

The obtained PDF �3� includes all information about the
system extracted from the TS, and analysis of the ensemble
of parameters �, distributed according to �3�, enables one to
assess needed characteristics of the system. As this function
depends on a large number of arguments, the set goal may be
achieved by means of the MCMC analysis �9� that proved to
be efficient for investigation of high-dimensional distribu-
tions.

In practice, application of these methods is characterized
by extreme computational complexity in the cases when the
EO is an essentially nonlinear function and the arguments of
the distribution function in question are cross correlated,

which leads to long times of self-correlation of the corre-
sponding MCMC process.

Several ways to overcome this difficulty were proposed.
One of the most frequently used methods is based on the
transition to the principal axes in the space of arguments �see
�16� for more detail�. Unfortunately, this method does not
reach its goals when the dimensionality �number of argu-
ments� of the distribution is great, since this procedure im-
plies estimation of eigenvectors of the covariance matrix of
arguments, which per se requires large statistic sampling. If
the sampling volume is insufficient, pronounced error in de-
termining eigenvectors makes the transition to the principal
axes inefficient.

Thus, direct application of the MCMC methods for recon-
structing a DS in the case of high-dimensional sought poste-
rior distribution �2� may be absolutely inefficient because of
slow convergence to the equilibrium distribution. This very
situation takes place in the reconstruction of a dynamical
system from the noisy TS generated by it, which is of interest
to us: Here, the arguments of the studied distribution are,
first, model parameters and, second, unknown �due to the
noise� “real” values of phase variables. In the case of not too
short TS, the phase variables constitute the major portion of
the distribution arguments.

In this paper we propose a method which makes it pos-
sible to construct a representative sampling for some part of
the whole set of arguments of the initial probability distribu-
tion. The concept of the proposed method is approximate
integration, by means of the Laplace approximation, of the
initial multidimensional distribution with respect to “unnec-
essary” arguments.

III. SOLUTION METHOD

In the context of the problem in question, i.e., reconstruc-
tion of a DS from a noisy TS, when we need representative
sampling of model parameters and the search for real �“la-
tent”� quantities of the measured characteristic is not an is-
sue, our proposal reduces to “preliminary” �before sampling�
integration of the distribution P�� , �U�x� over latent vari-
ables U. There exists a whole family of techniques that
makes such an integration feasible for a stochastic system of
the general form �1� �see, e.g., �8,17��. Unfortunately, these
methods are inapplicable in the case considered when the
system is purely dynamical �deterministic� or, which is the
same, at zero �t.

Let us suppose the distribution P�� ,U� is not informative
for latent variables U, i.e., P�� ,U�= P���. For the Gaussian

noise �t	
iid

N�0,�2�, the expression for the conditional PD de-
scribing probability of generation by the model f�U ,�� of
the measured data P����x�=
P�� , �U�x�dU has the follow-
ing form �see �3��:

P����x� � P��� �
t=0

M−1 �
−�

+�

�
j=0

w

exp�− �xt�w+1�+j+1

− f j�Ut�w+1�+1,���2/2�2�dUt�w+1�+1. �4�

It is evident that, since the integrand in �4� has a pronounced
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maximum with respect to the variable Ut, it is convenient to
use the Laplace method for the integration. Let the function
�mismatch�

	t
2�x,U,�� = �

j=0

w

�xt+j − f j�Ut,���2 �5�

reach its minimum with respect to the latent variable at Ut
=Ut. Let us further transform formula �5� in the vicinity of
the minimum using the Taylor expansion. Taking into ac-
count vanishing of the linear expansion term we obtain

	t
2�x,U,��  	̄t

2 +
1

2
�U − Ut�T · Dt · �U − Ut� , �6�

where 	̄t
2=	t

2�x ,Ut ,��, Dt is the matrix of second derivatives
of the mismatch �5� with respect to the latent variable, and

Dt
ik = 2�

j

�f j

�Ut
i

�f j

�Ut
k − 2�

j

	̄t
�2f j

�Ut
i � Ut

k . �7�

Formula �7� becomes simpler if one takes into account the
smallness of 	̄t and neglects the term which contains it �18�,

Dt
ik = 2�

j

�f j

�Ut
i

�f j

�Ut
k . �8�

Finally, the integral �4� will be reduced to the integration of
multidimensional Gaussian distribution,

P����x� � �
t=0

M−1 �exp�−
	̄t

2

2�2�

�

−�

+�

exp�− �U − Ut�T · Dt · �U − Ut�dUt��
� �

t=0

M−1 �exp�−
	̄t

2

2�2� 1
�det Dt

� . �9�

The obtained PD depends on the number of variables which
is scores of times less than the initial PD �3�.

IV. RESULTS

Apparently, the distribution of parameters in various EO
models cannot be compared directly from the viewpoint of
their adequacy to the EO of the system, when the TS gener-
ated by the system is rather noisy. Aiming now at testing the
proposed “integrated” distribution of the EO model param-
eters �9� we compare this distribution with a “fully dimen-
sional” one described by the expression �3�. Both of these
distributions were constructed using “perfect” TS generated
by a computer and corrupted by noise afterward.

As a measure of the correspondence between the model
EO to the EO of the modeled system we use the function
��Y ,��,

��Y,�� =

�
t=1

T−1

�Yt+1 − f�Yt,���2

T − 1
, �10�

where Y is the true state of the system, and � is the vector of
parameters of the model constructed by the noisy data. Func-
tion �10� �which is, evidently, the “defect measure” for the
model f�U ,��� allows direct comparison between the models
including various number of variables from the viewpoint of
their best match with the underlying system �19�.

As was mentioned above, an important factor restricting
application of the Bayesian models for reconstructing DSs
from chaotic TS of arbitrary length is slow convergence of
the MCMC procedure of generation of an ensemble of pa-
rameters of the EO model ��n�n=1

N and latent variables
�Un�n=1

N corresponding to the posterior distribution �3�. Inte-
gration with respect to latent variables leading to the PD �9�
reduces this constraint substantially thanks to multiple reduc-
tion of the dimension of the sought distribution. Clearly, con-
vergence of the procedure of generating the ensemble
��n�n=1

N means convergence of the corresponding ensemble
of measure ���Y ,�n��n=1

N �see �10�� that depends on these
parameters. The rate of convergence of measure �10� was
estimated by approximating the ensemble ���Y ,�n��n=1

N by
the function

g�n� = � + e�−n/��, �11�

which is characterized by the time scale �.
The testing was performed using a chaotic TS, 300-points

long, generated by the logistic map xk+1=1−hxk
2, corrupted

by additive noise �t	
iid

N�0,�2�. Figure 1 shows an example of
the chaotic TS generated by this system for the parameter
h=1.85 corrupted by additive white noise with �=0.05.

To simulate the situation �unknown DS and high-quality
model� described by Eqs. �3�, �4�, and �9� we used a simple
artificial neural network �ANN� as a model of the evolution
operator. The choice of ANN as a model was determined by
the existence of the theorem which states that any continuous
function of an arbitrary number of variables can be approxi-
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FIG. 1. Normalized chaotic time series �logistic map xk+1=1
−hxk

2 ,h=1.85� corrupted by additive white noise with �=0.05.
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mated by an ANN having a sufficient number of neurons to
any preset accuracy �20�. In the current paper we used a
three-layer perceptron set by the function

fm�x,�� = ��
i=1

m

aki tanh��
j=1

d

bijxj + ci��
k=1

d

, �12�

where m is the number of neurons in the hidden layer, and
�= �a ,b ,c� are the parameters. The initial training of the
network was performed using the supervised learning
method which is typical for the problems of data approxima-
tion �see �21� for more detail�. The model �12� used to re-
construct the EO included 15 parameters �m=5,d=1�.

For the EO model in the form of a three-layer perceptron,
we used prior distribution P��� of the form

P��� = exp�− �
i=1

m ��
k=1

d
aki

2

2�a
2 + �

j=1

d
bij

2

2�b
2 +

ci
2

2�c
2�� , �13�

where �a
2 ,�b

2, and �c
2 are dispersions of the corresponding

parameters the magnitude of which determines rigidity of
prior restrictions imposed on the solution of the inverse prob-
lem of reconstruction. A detailed discussion of the choice of
values of these parameters can be found, for instance, in
�22�.

The estimated convergence rate of the measure �10�
shows that for the “integrated” PD �9� and various values of
the number of EO reiterations w, the characteristic times �
ranged from 2000 to 3500, whereas in the case of the “fully
dimensional” PD �3�, the value of � ranged from 106 to 108

�23�.
An example illustrating this difference in the convergence

rate is shown in Fig. 2. It is seen that the process of sampling
PD �9� can be regarded to be fully converged after about
7000 iterations �see Fig. 2�b��, whereas the sampling PD �3�
does not converge, even if the number of iterations is 2 or-
ders of magnitude more �see Fig. 2�a��. Thus, one can con-
clude that convergence takes place when the “integrated” PD
�9� is used and does not occur in the case of the “fully di-
mensional” PD �3� �24�.

Figure 3 shows the measure �10� as a function of w for
PDs �3� and �9� in the case of a fixed level of measurement
noise. They are plotted for an equal �sufficiently large� num-
ber of iterations used to construct the corresponding distri-
butions of parameters.

It is clearly seen that the model with the parameters dis-
tributed in accordance with PD �9� demonstrates better cor-
respondence with the initial system �smaller average defect

and dispersion� for all values of w and for all considered
noise levels.

It is also seen from the presented plots that there is an
optimum along w in both of the cases. The cause of decreas-
ing measure �10� as w grows is common for both “fully
dimensional” and integrated PD. The model is improving
when it is getting closer to the form which is “perfect” in the
framework of the Bayesian approach �when the segment
length �w+1� is equal to the total length of the TS�. In other
words, the greater w, the better the model f�U ,�� captures
dynamical properties of the modeled system.

The increase of measure �10� in the case of an “excessive”
growth of w is also easy to explain. For integrated PD find-
ing of the global maximum of P�� , �U�x� �or, which is the
same for normal distribution of measurement noise, of the
global minimum of mismatch �5�� eventually becomes im-

FIG. 2. Dependence of
��Y ,�n� on the number n of itera-
tions of the sampling procedure
�gray curve� and function �11�
which approximates it �black
curve� for the “fully dimensional”
�a� and “integrated” �b� PD; w=4.
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FIG. 3. Measure �10� versus w: Average and standard deviations
of the model’s “defect measure” for the “fully dimensional” PD
�solid curve� and the PD integrated over latent variables �dashed
curve�. Noise level is �=0.05 �a�; �=0.1 �b�; �=0.2 �c�.
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possible because of the exponentially fast diverging of the
initially close phase trajectories. As a result of the divergence
an increase in w leads to decreasing characteristic size of the
regions of values of the latent variables and of model param-
eters that ensure passage of the model phase trajectory in the
noise-specified neighborhood of the trajectory reconstructed
by the noisy TS.

Accordingly, the mismatch �5� as a function of its argu-
ments takes on a multimodal �“jagged”� form �see Fig. 4�.
Hence, for excessively large w, the PD �9� leads to a model
that is less correct than at smaller w. In the case of the “fully
dimensional” PD, redundant increase of w makes correct
sampling of the distribution �3� impossible because of its too
high dimensionality. As a consequence, in both of the cases,
the measure �10� starts to increase when a certain optimal
value is exceeded by w.

To illustrate this statement in relation to integrated PD, we
will consider the simplest case when the latent variable Ut is
unique. In other words, we will consider the function
P�� , �Ut�xt� corresponding to one segment of �4� and com-
pare the integrals

I��k� =� P���, �Ut�xt����dUt �14�

of this function for fixed values of the other parameters ��

= ��1 , . . . ,�k−1 ,�k+1 , . . . ,�n�, obtained by precise numerical
integration and using the approximate integration by the
Laplace method �Fig. 5�. It is seen from the plots in Fig. 5
that, when w exceeds a certain value wmax, the distribution

integrated by the method differs significantly from that cal-
culated precisely �by the method of trapezoids with appro-
priate step�. This difference is the consequence of the error in
searching the global minimum in the profile of the mismatch
	t

2��Ut��x,� when using the Laplace integration method.
Based on the above, one can estimate the value of wmax

analytically. With increasing w �i.e., with increasing number
of EO reiterations�, the number of the minima of function
	t

2��Ut��x,� grows approximately by the law e�w �here � is the
largest Lyapunov exponent for the chaotic attractor under
consideration�. Correspondingly, the distance l between ad-
jacent minima can be estimated by e−�w. If the uncertainty of
setting initial conditions in terms of latent variables, which is
determined by the noise level �, exceeds l, the probability of
entrapment of the initial values of latent variables into the
attraction domain of the local �and not global� minimum in-
creases strongly. Thus, the maximum value of w can be es-
timated from the following relationship:

e−�wmax � � . �15�

The calculation of the largest Lyapunov exponent � using the
TISEAN software �25� shows that, for the logistic map
xk+1=1−hxk

2 at h=1.85, we have �0.5. From Eq. �15� for
the noise level �=0.05, we estimate the maximum number of
EO reiterations to be wmax�5, which corresponds to the re-
sults of the calculations shown in Fig. 3.

To conclude this section we note that the distribution
function �4� constructed assuming normal noise distribution
may be used for noises with a different unimodal distribution
with limited dispersion. Consider by way of example the
case when �-correlated noise entering data of measuring x
has uniform distribution. The function of posterior PD inte-
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FIG. 4. Dependence of 	t
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=0.05.
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grated over latent variables that is correct for this case has
the following form:

P����x� � �
t=0

M−1 �
−�

+�

�
j=0

w

H�xt�w+1�+j+1

− f j�Ut�w+1�+1,���dUt�w+1�+1,

H�y� = �1/�b − a�, a � y � b ,

0, else,
� �16�

where a and b are boundaries of the uniform distribution.
Comparison of the dependence of the integrals �14� deter-
mined by the tth factor of the function �16� and by the cor-
responding factor of the function �4� �“incorrect” for uni-
formly distributed noise� on one of the model parameters is
given in Fig. 6 for different segment lengths w. These cofac-
tors were calculated by means of exact numerical integration
over the unique latent variable.

One can see good agreement between the plotted depen-
dences. The confidence intervals of the parameter corre-
sponding to root-mean-square deviations overlap by more
than 90% for all the used w.

V. CONCLUSION

The paper proposes an approach that makes it possible to
apply MCMC algorithms for solution of inverse problems in
the framework of the Bayesian approach when a great num-
ber of variables of posterior probability density do not allow
their direct application. This approach can be used when the
dependence of the probability density on part of the variables
allows integration over those variables using the Laplace
method �in other words, when the probability density is
“quasi-Gaussian”�. In many cases, it allows a significant re-
duction of the number of variables used in subsequent sam-
pling. As shown in the paper, one of such applications is the
problem of reconstruction of dynamical systems from noisy
chaotic time series: In this situation, the dependence of the
probability density on latent variables �noiseless states of the
system� is close, in the aforesaid sense, to the Gaussian one.
Efficiency of this approach is demonstrated on an example of
such a system, and the limits for its applicability are deter-
mined. Specifically, it is shown that as the length of the se-

ries grows, direct application of MCMC becomes impossible
very rapidly, whereas the proposed approach makes it pos-
sible to exclude the dependence of the rate of convergence of
the corresponding iteration procedure on the TS length.
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